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A class of solutions of equations of the theory of condensed systems combustion 
that are defined by fairly simple ordinary differential equations and which in a 

number of cases can be completely integrated is considered. Certain particular 

cases of application of the obtained class of solutions to specific problems are 

presented. These solutions are interesting in themselves and can be used as stand- 
ards for checking numerical and approximate methods of integration of nonstation- 
ary equations of the theory of combustion. 

1. Basic equations. On a number of assumptions the problem of the course of 
a single-phase exothermic chemical reaction in a condensed medium can be defined by 
the system of dimensionless equations 

a0 1 at = A0 + Y@ co), aY / at = -Y@ (0) (1.1) 

where t is the r-vector ,of.space variables, A = 02 

(0 > O), 
is the Laplace operator, 0 

is the dimensionless temperature J/ is the concentration of the reagent 

(0 < Y < i), and,@(@defines the dependence of the chemical reaction rate on tem- 
perature. Usually 0 (0) 2 0 is a monotonically increasing function of 8. For ex- 

(1.2) 

The problem of propagation of a stationary combustion wave in a space completely 
filled by the reacting medium is the most investigated analytically and numerically 
with the use of system (1.1). The unknown functions in that problem depend only on a 

single combination of independent variables 11 = 5 f Vt (when propagation is along 

the x-axis j, where V is the propagation velocity of the wave, and satisfy the bound- 
ary conditions 

8 (+a~, t) = 1, y (+ m, t) = 0 H 8 (- 00, t) = 0 
with Y (- co, t) = 1 (for waves propagating from right to left). 

In the above formulas temperature and concentration for x=--o0 correspond 
to the fully active substance, and for x=-+co to products of the reaction. The 
temperature 8 = 1 corresponds to the adiabatic combustion temperature. 

The unknown functions 8 (5, t) = @ (7) and y (x, t) = Y iq) are the solutions 
of the system of ordinary differential equations 

&a -- 
dq” ’ dq 

*+YcD(B)=o 

(1.3) 
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v+i_Y@(@)=o, v>o 
0(-t- 00) = I, y (+ 00) = 0, 0 (- 00) = 0, Y (- 00) = 1 

where V is the eigenvalue of problem (1.3). 
This problem was analyzed in a number of worlds for example [I-S}, where several 

theorems about the existence and uniqueness of solution are proved and approximate so- 

lutions are derived. Thus for function @ (0) of the form (1.2) for G+ < con& is the 
solution of problem (I. 3) which exists and is unique. The typical form of solution is pre- 

sented in Fig. I, 

Fig. 1 Fig, 2 

Because the solution of problem (1.3) is invariant with respect to translation along 

the q -axis ( C =constwhen II -+ 9 + C), we select the translational constant so 

that for ? = 0 the quantity 8 (0) corresponds to some specified quantity 6* 
(0 < 0” < I), for instance, 6” - ‘/a. In what follows we assume that functions 8 (r ) 
andy (7) satisfy such normalization. 

Besides the solution of the kind of stationary running wave derived above, it is pas- 

sible to construct for system (1.1) a wider class of solutions. For this we shall seek a so- 

lution of system (1.1) of the form 

Q (c, E) = z {E), y (I, t) - f (r)v GA E = 02 + g Cr) R4) 

where functions 2 (8, f (r)+ ‘P and Y (i’) are determined below, and a is an ar- 

bitrary constant (CC # 0). 
Substituting (1.4) into (I.. I.) we obtain 

(1.5) 

If the solution of system (1.1) is to be of the form (1.41, it is necessary to set 

It = It 1 vg \Y f (r) = d f vg I” 
fl* 6) 

Ag - 
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where b and 
duct f (@ cp (Q 

d are arbitrary constants, Since the problem contains only the pro- 
h ence tithout loss of generality we can set d = 1. Then with a~- 

lowance for (1.6) from (I, 5) we have 

Thus any sohttion of Eqs. (I. 6) and (I, 7) yields the solution of the input system (1.1). 
When 5 # 0 the first of Eqs. (1.6) is nanlinear, hence it is convenient to intro*- 

duce a new unknown function. We have 

The first integral of Eqs, f 1.7) is 

dz/dg + bz - ag, = c 

with the use of which from (1.7) we obtain 

dP -=p-Y(c-bz-p)(f)(z)-abp], s=p(z) 
dr; 

fl.91 

Note the substantial difference between systems (1.7) and (1.3) in that in the form- 
er the variable E can vary in a s~~ounded interval and the constants a, b and 

C are, in the general case, not interconnected quantities. 
2. Pa I t i c u 1 a r c a se 8. Let us consider some problems whose solutions can 

be constructed in the form f 1.4). 
We assume that the constants a, b and c are chosen ~0 that 

a= -b=-_c=V>O 

The solution of system (II, 7) is then of the form 

2 (E) = @ (EL al (E) = y (E) 

For a centrally symmetric function u (r), we have from (1.8) 

(2.V 

(2.2) 

(2.3) 

The values of lil equal to 0, 1, 2, relate to plane, cylindrical and spherical symmet- 
ry. From (1.4), (1.61, (1.8) and (2.3) we have 

5 = Vt f V-l In ch (VT) + A, J (r) = tha (VP) fn = 0) 
(2.4) 

E = Vf + V-l In I, (VP) + A, f (7) = II2 ~:Vr)I,-~ (ppg tra= 1) (2.5) 

ri, = Vt -k F-l In fr-l sh (Vr)] + d 

f b’) = fcth (vr) - V-+‘]* 
(2*6) 

(n 12) 
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where .Jt (r) (i = 0, 1) are Bessel functions of imaginary argument and -4 
is an arbitrary constant. 

Weas~methat O<r< 03. First, we consider the case of n = 0 , then 
setting t z 0. we find that solution (1.7) defines the evolution of initial dis- 
tribution 

0 0 = 0(r,O) = O(V-‘Inch(Vr) +A) (2.7) 

Yo = Y (r, 0) = ths (Vr)Y (V-l In ch (Vr) + A) 

whose pattern is shown in Fig. 2 

To determine the variation of concentration and temperature profiles in time we 
observe the motion of the isotherm 0 (E, t) = Si. From (2.4) we then have 

r;(t) = V-lln(E + vm), E(t) = Biemvzt 

E>i 

(2.8) 

where .EI, are constants that are different for different isotherms. 
It is seen from (2.8) that when t + --a~, all isotherms move at constant ve- 

locity v. With increasing t the isotherm velocity increases and becomes different 
for different isotherms. When ti = vS2 In Bi the velocity of motion beco- 

mes infinite, and for $> ti temperature 0 (r, t) > Eli, 0 < r =Cz cm. 

The problem whose solution is defined by formulas (2.2), (2.4), (2.7) and (2.8) 
corresponds in thephyacal sense to the propagation of a combustion wave in the half- 
space bounded on the left (r = 0) by the adiabatic wall (48 (0, t) ,’ dr = 0). 

In the wall neighbourhood up to distances of order Fi-l the concentration of the re- 

agent differs from that in the unreacted media and is of the formth2 (Vr).It is seen 

from (2.7) that when (--A) >> 1 

0 (r, 0) = 0, y (r, 0) zs tha (Vr) for Vr c 1 
8 (r, 0) = e (A + r - In 2) and Y (r, 0) - Y (A + r - In 2) 

for Vr > 1 

Thus the initial distribution is a perturbed stationary wave. When A = const 

and -oCJ\(t,<+cx, solution (2.2), (2.4) corresponds to ” interaction” be- 
tween the adiabatic wall and the stationary (when t + -m) 9 combustion wave pro- 

pagating from right to left in the half-space with concentration th2 (Vr) (or, what 
is the same, to two combustion waves moving against each other). 

Solutions for converging cylindrical (‘2.5) and spherical (2.6) combustion waves 
in a condensed substance with initial concentration distributionf (r) and temperature 

Q-0 are derived in the same manner. The question of stability of the obtain- 

ed nonstatinary solution remains open. However, since this solution defines a physi- 
cally correct concentration and temperature distribution when t -+ -+ 00 , resp- 

ectively, 0 {r, + m) = 1 and Y (r, i- a~) = 0, one should expect 
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this solution to be stable. 
Solution of the kind (1.4) may also be derived with the use of other solutions of Eq. 

(1.8). 
Such solutions (ab = 0) can be obtained by setting b = 0, a = 1 

and c=o and seeking a univariate symmetric solution for n = 0 that 

satisfies conditions 

In that case from (1.6) and (1. ‘7) we obtain 
z 

dz 
A-= 

dE s cp = - s 4, (2’) dz’, 
(2.9) 

Q (2’) dz’, g (F) = V2f2 + A 
1 1 

A 

where A is an arbitrary constant. Setting for simplicity @ (4 = z from (2.9) 

we have 

8 (r, t) = th f , +t+;+A (A),O), y(r,t)=&h-$- 

Now setting ab = Y” > 0 case (n = o) we take E (em gL ;or; a = y > 0) in the one-dimensional 

(2.10) 
E = yt - y-l ln 1 cos (~$1 1 i- A, f (d = k” (Yd 

where A is an arbitrary constant related to the selection of the time reference point. 

It is then possible to define the course of the chemical reaction (1.1) in an infinite pl- 

ane vessel whose walls are 22 apart and at temperature 8, which is maintained 

constant. For this it is necessary to set 

y (tE) i= zx (r/s + k) I-‘, k = 0, 1, 2,. . . 

z(+00)=8s, c=yes 

Let us consider the simplicity function de, (0) of the form (1.2) with aI = 1. From 

(1. ‘7) we then have 

2 (E) = AI + As exp (-- yE) 

cp (8 = Al - 8, for z <$ 

s (E) = 9, + -4, exp (- yE) 

Cp (5) = A* exp (-ET-r) 

- Aa (1 - y-%) exp (-- gy-1) 

for 2 > 9, 

where At (i = 1, 2, 3, 4) are arbitrary constants. From the condition of continu- 
ity of the temperature field 8 (F, t) and of the heat flux ae (r, t) I dr we 
obtain along the isotherm 2 (E)= 0 the following three relationships: 
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8, = A, -+ d, exp f--&J = 8, + Aa i3xp (-- J&J - 
4 (1 - r-2) exp (-EoP)l 

-42 ew C--y&d = A,exp (--_yL) - A,y-2 (1 - y-2) exp (-Eoy-1) 

where E,, is the coordinate which defines the position of isotherm z (9 = 8,. 
Owing to the arbitrariness of the selection of A 

loss of generality, f = 0 , Then 
in (2. lo), we can set without 

2 (E) = A, 4 (0, - Al) exp (-- YE) 
(2.U) 

cp (E) = A, - i, for 2 < 00 

2 (E) = 8, + [(a, - 

(% 
(5) + (% - A,) (1 - y-2)-1l exp (- YE) - 

- A,) (1 - ys)-l exp (- Er-l), 

rp (E) = (A, - 0,) exp f- ET-‘> for 2 (El > 8” 

where A, is a free parameter. The physical requirement that 0 < y (r, t) \( 1 
implies this condition 

1 > Jf%c(ll, + k), y2 > 2 
(2.12) 

It is, thus, possible to derive for a given k a solution of the form (1.4) where E 
and f (f) are determined in (2. IO), however, only for vessels for which formula (2, 

12) is valid. 
Note that solution similar to (2.10) and (2.11) can be also derived for vessels of ot- 

her shapes. In that case functions U (r)and parameters Y are, respectively, eigen- 

functions and eigenvalues of the problem 

Au = - y%, U 1s = 0 

where S is the vessel surface area. 
When t-too the tempera~re distribution in the vessel becomes uniform: 8 

(r, + oo) = &and y (r’, + oo) = 0, which is in agreement with the physical sen- 

se of the problem. 
The solution of the problem under conditions of heat insulation can be similarly sol- 

ved: QB.QS = 0. Function u (?J and parameter ‘? must then correspond to 

eigenfunctions and eigenvalues of the problem 

Au := -y2uI Vu. VS e 0 

We note in concluding that solution of the form (1.4) can be constructed for other 
problems of the theory of combustion of condensed substances, that are defined by mo- 
re complex kinetics, for example, N 

$ ,= Ml + CAI fi &icDj (8) jj,& = 1) 

j=l i=l j.zj, 
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where Ai, Bi and fit i are constants and N is the number of reagents taking 
part in the reaction. 
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